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Abstract. To manipulate objects in novel, unstructured environments,
robots need task-oriented grasps that target object parts based on the
given task. Geometry-based methods often struggle with visually defined
parts, occlusions, and unseen objects. We introduce OVAL-Grasp, a
zero-shot open-vocabulary approach to task-oriented, affordance based
grasping that uses large-language models (LLM) and vision-language
models (VLM) to allow a robot to grasp objects at the correct part
according to a given task. Given an RGB image and a task, OVAL-
Grasp identifies parts to grasp or avoid with an LLM, segments them
with a VLM, and generates a 2D heatmap of actionable regions on the
object. During our evaluations, we found that our method outperformed
two task oriented grasping baselines on experiments with 20 household
objects with 3 unique tasks for each. OVAL-Grasp successfully identifies
and segments the correct object part 95% of the time and grasps the cor-
rect actionable area 78.3% of the time in real-world experiments with the
Fetch mobile manipulator. Additionally, OVAL-Grasp finds correct ob-
ject parts under partial occlusions, demonstrating a part selection success
rate of 80% in cluttered scenes. We also demonstrate OVAL-Grasp’s effi-
cacy in scenarios that rely on visual features for part selection, and show
the benefit of a modular design through our ablation experiments. Our
project webpage is available at https://ekjt.github.io/OVAL-Grasp/.
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1 Introduction & Related Work

Robots in unstructured environments must identify objects and understand their
affordances—the actions they enable. Affordance grounding links actions to ob-
ject geometry. Most current methods are end-to-end, relying on supervised train-
ing with fixed affordances, which limits adaptability [2]. Recent work explores
one or zero-shot (open vocabulary) affordance localization [9, 10]. However, they
still require some fine-tuning, which can be costly and dataset-dependent. We
present our method OVAL-Grasp, a modular and training free approach to
task oriented, affordance-based grasping, that enables a robot to grasp an open
set of objects at the correct part according to a task described by language. This
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Fig. 1. OVAL-Grasp at work on the Fetch mobile manipulator. The robot understands
which parts of the object it should grasp and which parts should be avoided to fulfill
the given tasks described by language.

paper presents our method, along with an evaluation of its performance com-
pared to two state-of-the-art (SOTA) baselines, ShapeGrasp and GraspGPT [7,
19]. Figure 1 demonstrates OVAL-Grasp in action.

Large Language Models (LLMs) and Vision Language Models (VLMs) have
emerged as powerful open-vocabulary tools [4], excelling in robotics applications
like planning and navigation [15,14]. Prior affordance localization approaches
used fine-tuned LLMs [13] or text encoders [10]. In contrast, we explore af-
fordance localization using pre-trained foundation models without fine-tuning.
Task-Oriented Grasping (TOG) selects grasps based on task input and affor-
dances [5]. Deep learning-based TOG methods [20] require supervision, while
recent zero-shot approaches [19, 18, 7] aim to generalize but often still need train-
ing. In this work, we present the following contributions:

1. OVAL-Grasp, a method for zero-shot task-oriented grasping by leveraging
LLMs and VLMs.

2. A modular design that enables performance improvements as individual com-
ponents are enhanced.

3. A method that achieves superior performance over SOTA methods in real
robotic experiments.

4. Experiments that demonstrate the capability of our method in novel TOG
scenarios such as completing tasks that require both visual and geometric
cues.

2 Problem Definition

In order for the robot to perform a successful zero-shot task oriented grasp
given an RGB-D image I € RH*WXC ag input, the robot must generate an
end-effector pose g € SFE(3) that lies on a part of an object z that facilitates the
execution of a task ¢ described by natural language. We assume that the robot
has an egocentric RGB-D camera as well as a manipulator arm with a parallel
jaw gripper capable of navigating to the grasp target g. We also assume access
to a Large Language Model L, a vision-language part segmentation model V,
and a grasp proposal model G. TOG methods can be evaluated by measuring
their part identification and grasp success rate [7,18,19]. A task oriented grasp is
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Fig. 2. System overview. The robot generates a task-oriented grasps by using an LLM
to identify grasp-relevant object parts, a VLM to segment them, and a constructed
heatmap to filter grasp candidates to produce a set of grasp that fulfill the given task.

considered successful if the proposed grasp location fulfills the given task based
on commonsense reasoning.

3 OVAL-Grasp: Affordance-Prompting

OVAL-Grasp processes an RGB image and a task description to localize affor-
dances. As shown in Figure 2, the language model L uses the task ¢ to identify
the object x, and decompose it into the desirable parts (to grasp), and the un-
desirable parts (to avoid). The part segmentation model V' then segments these
parts, which we use to generate a heatmap based on each part’s confidence score.
The grasp generator GG proposes candidate grasps for the entire object, which
are subsequently scored using the heatmap.

Part Decomposition: We prompt L to identify and decompose the relevant
object x into desirable and undesirable parts, where parts that facilitate task ¢
are desirable, and vice-versa. We use the GPT-40 APT [12].

Part Localization: We prompt V with the list of identified parts, producing
a binary mask and confidence score for each part. We use PartGLEE [6] for its
SOTA open-vocabulary part segmentation capabilities.

Heatmap Generation: OVAL-Grasp filters grasp candidates by composing
a heatmap from relevant part segments and confidence scores. We generate a
heatmap with the same height and width as the input image to score potential
grasps. The heatmap H is initialized to zero , and the whole object segmentation
is added with a positive value. The desirable part segments are added to the
heatmap and undesirable segments are subtracted from the heatmap and are
both scaled by their respective confidence scores. The values in the heatmap H
were scaled to the range [0,255] and then smoothed using a Gaussian blur with
a 3 x 3 kernel to remove any noise from adding segments.
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Fig. 3. Our experimental setup used the Fetch robot (left) and household and YCB
objects (right) to evaluate OVAL-Grasp and baseline methods.

Grasp Generation and Filtering: Based on the previous modules’ outputs,
OVAL-Grasp scores candidate grasps using the task-specific heatmap, selecting
the highest-scoring pose for execution. We used ContactGraspNet [17] to gener-
ate the candidate grasps g., where the number of candidates ranges from 0 to
N depending on the scene. Each candidate grasp is scored using H. We use two
scores, the contact score ensures the grasp targets the correct region, while the
z-axis score discourages approach angles that could obstruct task-relevant areas.
The contact score S¢(g.,) is computed by reprojecting the gripper’s contact point
(z¢,ye), provided by ContactGraspNet, into the heatmap H. From the object
point cloud P, and the line z, created by extending the z-axis of the grasp, we
find point p € P that is closet to z,. The z-axis score S.(g.,) is calculated by
reprojecting p to H, (2, Yp)-

SC(gCi) = H(%JJC) Sz(gcz) = H(xpﬂyp) S(gC‘L) = Sc(gu) + SZ(.gCL) (1)

The grasps are then sorted by their total score S(g.,) which is calculated as
shown in Equation 1. The highest score grasp is selected as the grasp target g.

4 Experiments & Results

We evaluate OVAL-Grasp in four aspects: (1) part identification and grasp suc-
cess in table-top settings, (2) robustness in cluttered scenes, (3) vision-based
reasoning for task-oriented grasping, and (4) an ablation study isolating the
impact of different language and segmentation models.

4.1 Experiment Setup

We tested our method and a set of baseline task-oriented grasping algorithms
using a Fetch and Freight Research Edition robot to grasp objects placed on a
table. We compare our model against the baselines GraspGPT [19] and Shape-
Grasp [7]. These models were chosen based on their state-of-the-art performance
on task oriented grasping benchmarks. RGB-D images were captured using the
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Fig. 4. Examples of ShapeGrasp failures. When dealing with more convex geometries
and parts that are flush with the object, ShapeGrasp fails to identify the part.

onboard head camera. For each method, we evaluate grasp success through mul-
tiple trials. We control for object configuration by resetting the objects’ locations
consistently between each trial and across all the methods tested. It is impor-
tant to note that both GraspGPT and ShapeGrasp are given the ground truth
segmentation mask of the relevant object to allow them to produce a predicted
task oriented grasp; our method produces a task oriented grasp directly without
needing a ground truth object mask. To evaluate the models, we tested them
on 20 objects, each with three tasks requiring the robot to grasp the object
in three different locations while positioned in front of them. The object set
includes samples from the first and second baseline methods, objects from the
YCB dataset [1], and additional objects not demonstrated in either baseline.
Figure 3 shows the experimental setup and the objects tested. Each method was
evaluated on two metrics—Part Selection Success and Grasp Success—similar
to the metrics in [7]. Part Selection Success is the proportion of trials in which
the system correctly labels the task-relevant part and (by commonsense visual
inspection) generates a mask that covers 100% of the part’s visible region in the
RGB image. Grasp Success is the proportion of trials in which the robot then
executes a stable grasp on the identified part and lifts it off the table.

4.2 Grasp Success Experiment

The results of the Grasp Success Experiment are shown in Table 1. We find
that OVAL-Grasp outperforms the other two baselines, achieving 35% better
performance than GraspGPT and 21.7% better than ShapeGrasp in part se-
lection, despite not having access to the ground truth object mask. GraspGPT
struggles to generalize to unique and novel objects or tasks, frequently scoring
all proposed grasps nearly equal. ShapeGrasp performs better but has difficulty
decomposing objects with simple convex geometries, contiguous parts or parts
flush with the object’s body. This is exemplified in Figure 4, where ShapeGrasp
is unable to find the pitcher lid, and pull tab of the can. The few part-selection
errors for OVAL-Grasp, accounting for 5% of failed trials, occur when V fails
to generate a valid segment or when L hallucinates an incorrect decomposition,
whereas the 21.7% of failed grasps result from G producing only marginal or no
grasp candidates.
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Table 1. Task-oriented grasping experiment on 20 objects with 3 tasks per object.

Method Segment Source Part Selection Success Grasp Success Time
GraspGPT [19] Ground truth  60.0% 56.7% 128.67s
ShapeGrasp [7] Ground truth  73.3% 66.7% 22.21s
OVAL-Grasp PartGLEE[6] 95.0% 78.3% 19.86s

Our grasping success rate is higher than both baselines. ShapeGrasp’s grasp-
ing strategy relies on geometry and heuristics around the part’s centroid, which
sometimes leads to grasp failures. GraspGPT’s grasps also have a lower success
rate due to poor semantic understanding. In contrast, our method leverages an
off-the-shelf grasp generator that proposes a variety of grasps, which are then
filtered through an affordance-based heatmap, resulting in more effective overall

grasping.

4.3 Runtime Evaluation

To assess runtime efficiency, we measured the average wall-clock time of each
method on a system with an RTX 3090 GPU and an Intel i9-11900KF CPU.
GraspGPT is an order of magnitude slower than both ShapeGrasp and our
method due to repeated LLM queries. In contrast, ShapeGrasp and our approach
require only a single query. However, none of the methods currently achieve real-
time performance, as LLM inference introduces significant latency.

4.4 Visual Semantics

Task Input Heatmap All Filtered

“Read the
bar code”

"What brand
of soup is
this?"

Fig. 5. OVAL-Grasp idenitifes object parts not linked to the object’s geomtery. Scores
are assigned to the barcode and soup can label segments in the heatmap and grasps
that obstruct them are filtered out.

OVAL-Grasp is also able to reason about visual semantics. Some tasks require
visual understanding beyond geometry, such as scanning a barcode or reading
a label on a can or bottle, a common task in a retail or domestic environment.
These parts are defined by visual features (e.g., colors and patterns) and cannot
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Fig. 6. Examples comparing OVAL-Grasp and baselines on part identification and
grasp proposal in clutter. Proposed grasp point is highlighted in green. OVAL-Grasp
successfully identifies the grasp point even with partially occluded parts.

Table 2. Task-oriented grasping experiment on 15 cluttered scenes

Method Segment Source Part Selection Success

GraspGPT [19] Ground truth  26.7%
ShapeGrasp (7]  Ground truth  46.7%
OVAL-Grasp PartGLEE[6] 80.0%

be captured purely by the object’s geometry. Unlike other baselines that rely
solely on geometry, our system uses visual RGB input to segment parts, enabling
more context-aware grasping. Figure 5 illustrates an example of this scenario,
where our approach is able to correctly identify and avoid grasping the barcode
and can label, both of which do not exist as part of the geometry.

4.5 Cluttered Scenes

Next, we set out to test each of the considered algorithms in cluttered scenarios
that are common in everyday human environments. To do this, we evaluated our
method and baseline approaches in cluttered scenes containing multiple objects
with varying degrees of occlusion and overlap. Each method was tested on a
similar set of tasks and objects as in the main experiment to ensure a fair com-
parison. While cluttered scenes fall outside the original scope of the other two
methods, we included them to assess how robust our model would be in real-
world settings. For this evaluation, we focused only on Part Selection Success,
not on the success of the final grasp execution. The results are reported in Table
2 and are visualized in Figure 6.

OVAL-Grasp performed robustly in cluttered scenes with occluded objects,
because it does not rely solely on geometric reasoning. In contrast, geometry-
dependent methods like GraspGPT and ShapeGrasp struggled when the target
object was partially hidden or fragmented. These methods rely on clear object
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visibility and intact shape priors: GraspGPT, trained on complete point clouds,
failed to generalize to fragmented inputs, while ShapeGrasp required canonical
parts to be visible for accurate part identification. Both methods were prone to
misidentifying object parts in clutter or when disjointed configurations made a
single object appear as multiple parts. OVAL-Grasp, however, remained effec-
tive under occlusion and appearance shifts, successfully identifying task-relevant
grasps even when parts were only partially visible or distinguishable by visual
features alone.

4.6 Ablation on Modular Design

To evaluate the contribution of each component, we conducted an ablation study
by replacing the part segmentation and language models. Using a subset of ob-
jects from the main experiments, we assessed performance based on part selection
results.

Table 3. Ablation study demonstrating OVAL-Grasp’s performance with different part
segmentation models and LLMs

Method Segment Source Language Model Part Selection Success
PartGLEE Deepseek-R1 (7B) 33.3%

OVAL-Crasp PartGLEE GPT-3.5 Turbo 58.3%
VLPart GPT-40 78.3%
PartGLEE GPT-40 95.0%

Table 3 contains the results of our ablation experiments. We tested 3 lan-
guage models—GPT-40 [12], GPT-3.5 Turbo [11], and DeepSeek-R1 [3] with
the best-performing part segmentation model, PartGLEE [6]. We also tested
2 segmentation models, PartGLEE and VLPart [16], with the best performing
language model GPT-40. On the language model side, GPT-3.5 Turbo struggled
with part-level reasoning, defaulting to object-level descriptions and showing
higher rates of hallucination and prompt sensitivity. DeepSeek-R1 performed
worst, likely due to its smaller model size (7B) and incorrect reasoning. These
issues align with evidence that chain-of-thought reasoning can impair visual un-
derstanding when language struggles to capture spatial or part-level concepts [8].
On the segmentation side, VLPart underperformed compared to PartGLEE due
to lower part detection accuracy. PartGLEE’s hierarchical modeling of object
parts contributed to more reliable affordance localization. These results suggest
that continued improvements in LLM reasoning and VLM segmentation will
directly enhance system performance.

Despite its strong performance, OVAL-Grasp remains subject to hallucina-
tions and other limitations of large pretrained models. Most failures stem from
incorrect part decomposition by the LLM, either hallucinating non-existent parts
or misclassifying graspable and ungraspable regions. Figure 7 shows two failure
cases in cluttered scenes: one over-segments a mug due to high clutter, and the
other incorrectly segments multiple handles from overlapping objects. In clutter,
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Fig. 7. Examples of part identification failures in clutter

the segmentation model becomes the main source of error. While LLM halluci-
nations still occur, occlusion often causes the segmentation model to misidentify
or over-segment parts, even when given the correct part name. As our ablation
studies show, these failures should decrease as individual components improve.

5 Conclusion

In this paper, we introduced OVAL-Grasp, a zero-shot task-oriented grasp-
ing framework that uses large language and vision-language models for open-
vocabulary affordance localization. OVAL-Grasp outperforms GraspGPT and
ShapeGrasp in part selection and grasp success, especially in cluttered scenes
and visual part identification scenarios. By leveraging VLMs, it enables context-
aware grasping beyond geometric cues. Its modular design ensures scalability
as foundation models improve, advancing zero-shot grasping in robotics. The
main limitations of our method stem from OVAL-Grasp’s open-loop reasoning
method. It lacks feedback mechanisms to detect and recover from failed or in-
correct grasps, preventing re-identification or regrasping with new information.
The system also supports only single-step grasps and cannot plan multi-stage
manipulations or recovery actions. Its reliance on pre-trained models reduces ro-
bustness, especially for niche or underrepresented object parts. Future work will
integrate closed-loop feedback—using tactile, force, or visual signals to detect
failures and active strategies like object reorientation, camera repositioning, or
probing to improve part segmentation and affordance localization in unstruc-
tured environments.
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